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Abstract

Recent asset pricing literature has focused on “crash risk”. In particular, Gabaix et. al.

(2008) and Farhi and Gabaix (2016) study the crash risk in the currency market. Gabaix et.

al. (2016) uncover that since the Fall of 2008, “crash risk” has increased dramatically, implied

by the FX options data. Motivated by Gabaix et. al. and the literature, and furthermore the

recent troubles in the Euro zone (since 2008), we use the EUR/USD exchange rate to study

the information contents of its RNDs since the crisis. We study the EUR/USD exchange

rate risk-neutral density (RND) that results in a number of novel findings.

Using daily data from EUR/USD FX options during the period from January 2, 2008 till

March 18, 2015, we discover that RND (especially higher moments) has superior explanatory

powers in predicting and explaining crash risk and its risk premiums. Furthermore, our

empirical results show that the higher moments of RND co-move closely with macroeconomic

variables. In all cases, we find moments outperform the implied volatility from the Black-

Scholes model.

In addition, we also estimate the elasticity parameter β assuming a CEV process for the

variance and the result indicates that β is quite high (1.88) which is substantially more than

the Heston model (where β is 1). We find that the term structure of volatilities derived from

the RNDs rejects the Heston model and any Gaussian-based models (such as the Black-

Scholes) for the EUR/USD FX rate.

Key words: European crisis, subprime crisis, crisis risk, risk neutral density, FX option,

stochastic volatility, Heston model

JEL Classification: G12, G14
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1 Introduction

The information contents of implied volatility pioneered by Chiras and Manaster (1978) and

Canina and Figlewski (1993) has sparked a wide interest in learning how option-implied para-

meters, which are forward-looking by definition, can carry useful information of the future of the

financial markets. Instead of retrieving one single parameter (implied volatility), recent studies

retrieve the entire risk-neutral density (RND) function. There are two advantages of using RND.

First, RND is model-free (in loose terms) as opposed to the implied volatility that requires a

parametric model (such as Black-Scholes). Secondly, the multiple moments of the RND carry

much more granular information than a single volatility number. In particular, the skewness

that is highly correlated with risk premiums and kurtosis that reflects fat tails provide investors

much more useful information than the volatility.

Given that RND carries useful forward-looking information, the literature has in general

used RND for in the following areas. The first strand of literature is use RND for prediction.

This includes the prediction of (1) future movements of the underlying asset (e.g. Gemmill and

Saflekos (2000)); (2) future option prices (e.g. Khrapov (2014)); (3) future volatility/variance

(e.g. Jiang and Tian (2005));1 and (4) future distributions of the underlying asset (e.g. Xu and

Taylor (1994) and Chen and Gwati (2012) for the volatility term structure and Christoffersen

and Mazzotta (2005) for the entire density.

The second strand is reflecting economic events. This includes Datta, Londono, and Ross

(2016) who study RNDs estimated around episodes of high geopolitical tensions, oil supply

disruptions, and macroeconomic data releases in the oil market; Malz (1997) who studies the

peso problem; Cooper and Talbot (1999) who study the yen crisis in the September of 1998;

Birru and Figlewski (2012) and Chen and Gwati (2012) who study the global meltdown of 2008;

Melick and Thomas (1997) who study the Gulf crisis in 1990; Gemmill and Saflekos (2000)

who study major economic events such as 1987 crash and British elections; Castren (2004) who

finds interventions on the exchange rate coincide with systematic changes in all moments of the

estimated RNDs and finds that RND moments from three newly joined E.U. member states

(Poland, Czech Republic and Hungary) move around policy news (Castren (2005)); and lastly

Kitsul, Yuriy, and Wright (2013) who find that RNDs assign considerably more mass to extreme

outcomes (either deflation or high inflation) than do their time series counterparts.

1Also see Christensen and Prabhala (1998) and Jorion (1995).
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The third stand is explaining risk premiums. This is represented by Dennis and Mayhew

(2002) who discover that the skewness of the RND tends to be more negative for stocks that

have larger betas, suggesting that options contain useful information about the market risk.

Bliss and Panigirtzoglou (2002) directly estimate risk aversion using the RND by option prices.

Malz (1997) finds higher moments explain currency excess returns much better than the CAPM.

Similarly, Chen and Gwati (2013) also find that higher moments consistently explain subsequent

currency excess returns for horizons between one week to twelve months. Nitteberg (2011) finds

RNDs to be highly skewed and claim evidence of market sentiment in FX and Oil markets re-

spectively. Breuer (2011) argues that the volatility of implied volatility are considered here as a

proxy for the risk premium and studies how the volatility risk premium affect the informational

content of currency options. Jurek and Wu (2014) study currency risk premiums by compa-

ring RNDs with parametrically estimated currency dynamics and conclude that option-implied

currency risk premiums provide an unbiased forecast of monthly currency excess returns. Si-

milarly, Ait-Sahalia, Wang, and Yared (2001) who compare RNDs with historically estimated

density functions and reject the hypothesis that the S&P 500 options are efficiently priced given

the S&P 500 index dynamics.2 Carr and Wu (2007) and Bakshi, Carr, and Wu (2008) find

strong skewness in RNDs over time derive models to accommodate stochastic skewness and risk

premiums.

Gabaix et. al. (2016) uncover that since the Fall of 2008, “crash risk” has increased drama-

tically, implied by the FX options data. Motivated by Gabaix et. al. and the literature, and

furthermore the recent troubles in the Euro zone (since 2008), we use the EUR/USD exchange

rate to study the information contents of its RNDs since the crisis.3 We believe that the option

implied RND can provide good insights, or even early warnings of the turbulences. In this paper,

we study information contents of the risk-neutral densities (RND) implied by EUR-USD foreign

currency (FX) option prices. The data cover the period from January 2, 2008 till March 18,

2015. For each day, prices of 40 options (5 moneyness levels and 8 maturities) are reported on

Bloomberg. We discover the following: (1) the third and the fourth moments of the RND have

a substantial explanatory power of FX swap spreads that represent term risk premiums, relative

to the implied volatility; (2) the third and fourth moments of the RND can successfully predict

catastrophic events (Lehman crisis, Flash Crash, and European sovereign crisis);4 (3) the third

and the fourth moments of the RND can predict future FX rates well; (4) shorter term fourth

2Note that Ait-Sahalia and Lo (1998) have estimated density function using a non-parametric method. This
is different from using option prices and a separate line of literature.

3Farhi and Gabaix (2016) relate rare disasters and exchange rate moves.
4In a broader measure, we use the VIX index to proxy rare events.
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moments (less than 3 months) are driven by speculative activities and yet longer term fourth

moments (greater than 3 months) are driven by imports and exports; (5) higher order moments

can predict the Economic Policy Uncertainty index and the USD influence index; and (6) fourth

moments outperform third and second moments in predicting realized volatility.

In addition, we compare the volatility term structure implied by the RND with popular

parametric models such as Black-Scholes and Heston. In particular, we find that both Black-

Scholes and Heston models fail to explain the volatility term structure by a wide margin. This

is similar to the idea of Britten-Jones and Neuberger (2000). We also estimate the elasticity

parameter to the variance process and the result indicates that the elasticity is much higher

than the Heston model.

Retrieving risk-neutral densities (RND) from option prices is a challenging exercise and has

attracted a lot of attention, in that the number of options traded in the market place is finite

and hence the RND is not uniquely defined. In the large body of literature, Britten-Jones

and Neuberger (2000) and Jackwerth and Rubinstein (1996) are most related to our paper,

yet our proposed RND method is simpler and faster in estimating model-free moments. Our

next section shall briefly illustrate other popular methods and discuss the difference between

our approach and the approaches of Britten-Jones and Neuberger (2000) and Jackwerth and

Rubinstein (1996). Though seeking a methodology that can best retrieve information from

option prices could be an interesting research topic on its own right, it is not the main focus of

our paper. We have implemented the major popular methods in the literature for our empirical

study as a robust check.5

There are literally an infinite number of ways to retrieve the RND (to be discussed in details

in the next section). In this paper, we adopt a piece-wise flat RND that matches exactly the

options traded in the marketplace. There are two advantages of using the piece-wise flat RND.

First, it is shown empirically, when compared to more complicated methods, such RNDs are

very stable over time. Second, the RND is a closed-form solution which is easy and fast to solve.

Third, the number of options can vary from one maturity to another (a term structure of RNDs)

and yet by construction all options are priced perfectly.

5The results are available upon request and we have a short discussion of these results.
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2 Methodology

The pioneer work of Breeden and Litzenberger (1978) demonstrates that the probability distri-

bution of the price/return of an asset can be derived from its options (e.g. calls) by taking the

derivative of the option price with respect to the strike price as follows:

F (S) =
∂C

∂K
(1)

where C is the option (e.g. call), K is the strike, and F (S) is the cumulative density function

(c.d.f.) for the underlying asset S. In the case of the Black-Scholes model, equation (1) equals

N(d2).
6 While a c.d.f. is all we need to price an option, it is more intuitive to write a p.d.f.

(probability density function):

f(S) =
∂F (S)

∂K
(2)

Bakshi and Madan (2000), among others, then show that in such a case a continuum of

option prices (across both maturities and strikes) can therefore completely span the asset state

space. That is, these European options can duplicate any exotic options on the same underlying

asset. In reality, of course, we do not have an infinite number of European options but only a

small set of such contracts. As a result, various methods are proposed to remedy the lack of

enough option prices. The literature has used four different methods:

1. smoothing in the volatility space

2. smoothing in the price space

3. smoothing using a parametric model

4. smoothing in the density space

Volatility smoothing has been the most popular method used in identifying the RND. Fig-

6We assume that readers have good familiarity of the Black-Scholes model where N(d2) is the in-the-money
probability of the European call option. In fact, within the option community, N(d1) (which is know as delta)
and N(d2) are frequently used expressions.
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lewski (2002) provides an excellent review of the literature.7 Under this approach, due to the

forced smoothness of the fitted volatility function, not all options can be exactly repriced.8 Ne-

vertheless, by enforcing a smooth function through the volatilities, a number of “fake options”

are created in order to fulfill equation (1).

In contrast, few researchers use price smoothing. Interested readers can find excellent refe-

rences in Figlewski (2008) and Orosi (2015).

Many researchers have tried to fit a parametric model to data. The problem with this

approach is of course that not all options are priced correctly. Prices observed in the market are

assumed to have measurement errors; or equivalently, they are not true prices (i.e. model prices).

The benefits of using the parameter models, as argued in the literature, are (1) parameters have

meanings (e.g. mean reversion, correlation, volatility), and (2) consistency over time is imposed.

The drawback of the approach is apparently that the model price is assumed to provide the true

price and market prices are assumed to be incorrect. While this is a more desirable approach

in terms of option repricing, the degrees of freedom are not easily managed. Either there will

be over or under identification of the RND generated by the binomial model (or any lattice).

Furthermore, as one shrinks the time interval of the binomial model, the number of degrees of

freedom increases, worsening the identification problem.91011

Assuming all market prices are correct, researchers retrieve the RND directly from option

prices. Note that, due to the insufficient number of option prices and too much flexibility in the

functional form of the RND, there exist more than one RND that can price existing options (i.e.

RND is not unique, unless there is a continuum of options). In this paper, we adopt a piece-

wise constant RND function. Piece-wise constant functions are commonly found in industry.

7For example, Shimko (1993) fits the volatility smile with polynomials; Malz (1997); Campa, Chang, and
Reider (1997) adopts a cubic spline function for the implied volatility curve; Bliss and Panigirtzoglou (2002) use
a weighted natural spline to fit an implied volatility curve; Jondeau and Rockinger (2000) experiment various
methods including Hermite polynomials, Edgeworth expansion. Santos and Guerra (2015) summarize

8Usually liquid options (e.g. those that are near the money) are given heavier weights and illiquid options (e.g.
farther away from at-the-money) are given lighter weights.

9The popular choices for the model are the binomial model (implied binomial tree) by Rubinstein (1994) and
Campa, Chang, and Reider (1997); trinomial model Derman and Kani (1994); mixture of normals by Melick and
Thomas (1997), Campa, Chang, and Reider (1997), Cooper (1999) and Gemmill and Saflekos (2000). Derman
and Kani (1994)) further impose smoothness on the lattice, which makes their method indistinguishable from
volatility smoothing.

10To fit a stochastic process, see Jondeau and Rockinger (2000) who try jump-diffusion and Heston’s stochastic
volatility model.

11Some may argue that perfect fit is not necessary as bid-offer spreads are sometimes wide. While this argument
is valid, as a modeler, we would like our models to be able to fit any value precisely.
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It has the advantage of stability and ease (fast) to compute. More importantly, in our case, it

offers an exact solution to the RND given any number of options available in the marketplace.

Furthermore, as it turns out, that piece-wise constant RNDs preserve the most information from

option prices. Other higher power polynomials (we also use piece-wise linear and cubic-spline

as a robust check) overfit the density and result in losing useful information.

An illustration of the density function is given in Figure 1.12 In Figure 1, the density function

is plotted upside down in order to match with the option payoffs. For each option Ck (as defined

by the strike Kk), there is a corresponding density mass ak which is a constant. Note that

0 ≤ k ≤ n+ 1 where n is the number of options; and K0 = 0 and Kn+1 = x which are the lower

and upper limits of the RND.

[Figure 1 Here]

Formally we write the RND as (where a subscript is added to the density function to reflect

that the RND is piece-wise):

fk(S) = ak Kk < S < Kk+1 (3)

for 0 ≤ k ≤ n and Kn+1 = x. This RND is then calibrated to option prices in the market. The

call option pricing equation can be easily derived as follows:

Ck =

∫ x

Kk

(S −Kk)fk(S)dS

=
1

2

∑n

i=k
ai(K

2
i+1 −K2

i )−Kk

∑n

i=k
ai(Ki+1 −Ki)

(4)

As a result, by equation (1), we have:

Ck − Ck−1
Kk −Kk−1

=
1

2
ak−1(Kk +Kk−1)−

{
ak−1Kk−1 +

∑n

i=k
ai(Ki+1 −Ki)

}
(5)

12A piece-wise linear, log-linear, and cubic spline examples are given in the Appendix where a comparison of
the RNDs and their variances are provided.
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which, if used recursively, yields the following solution for the probability mass:

ak =
2

(Kk+1 −Kk)2

[
Ck −

1

2

∑n

i=k+1
ai
[
(K2

i+1 −K2
i )− 2Kk(Ki+1 −Ki)

]]
(6)

with an = 2Cn/(x−Kn)2.

Since the probabilities must sum to 1, i.e.
∑n

j=0 aj [Kj+1 −Kj+1] = 1, the upper limit of

the RND can be solved as:

x = Kn +
1

an

[
1−

∑n

i=1
ai−1(Ki −Ki−1)

]
(7)

where K0 = 0. Note that equations (21) and (6) must be solved iteratively to reach a conver-

gence.

Having the RND estimated (i.e. ak for k = 0, · · · , n), we can then study a number of

distributional issues related to the RND. Firstly, we can calculate all the moments of the RND

for any given maturity (and we have 8 maturities to form a term structure of RNDs). Then,

we study the behavior of the stochastic volatility process. As a time series of RNDs under a

given maturity subsumes a random process of the volatility as indicated by Britten-Jones and

Neuberger (2000), it would be interesting to know how this volatility process behaves. For

example, it is interesting to know if the implied volatility process is consistent with the Heston

model.

3 Empirical Results

3.1 Data

Our data contain EUR/USD options from January 2, 2008 till March 18, 2015 (1,847 days).

On each day, there are 8 maturities (1-week, 2-week, 1-month, 2-month, 3-month, 6-month,

9-month, and 1-year) and 5 moneyness levels (10-delta, 25-delta, 50-delta (ATM), 75-delta, and

90-delta) a total of 40 options, quoted by Bloomberg.

Different from equity options, FX options are quoted by the following conventions:
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• by deltas and not by strikes, like 10-delta and 25-delta

• by a strategy and not by a naked option, like risk-reversal (RR) and butterfly (BF)

• by (Black) volatility and not by premium (similar to interest rate options)

• by rolling maturities as opposed for fixed maturities13

As a result, we must back out the option premiums by strike. Such a conversion is standard.

The data we obtained have already been converted by the vending bank (KGI bank).14

In addition to the option data, we also collect the spot FX rates and FX swap rates. The FX

swap rates are quoted as spreads to the current spot. The term structure contains: overnight

(ON), tomorrow-next (TN), spot-next (SN), 1-week (1W), 2-week (2W), 3-week (3W), 1-month

(1M), 2-month (2M), 3-month (3M), 4-month (4M), 5-month (5M), 6-month (6M), 9-month

(9M), 1-year (1Y), and 2-year (2Y). These terms to maturity vest the maturities of the options

and hence, we can only use those that match with option maturity tenors.

Given that both option premiums and strikes need to be computed from market quotes which

are by delta and Black’s implied volatility, the strike price changes from contract to contract,

even though they have the same Black’s delta. For example, a 25D (25-delta or delta=0.25),

3-month option on January 2, 2008 is quoted as 9.1125% (Black’s implied volatility). Given

the spot price to be 1.4715, the price and the strike are computed to be 0.009795 and 1.518760

respectively. On the next day, the spot price is 1.4750, the same 3-month, 25D call option is

quoted as 9.3000%, which give the option premium and strike price as 0.010013 and 1.523382

respectively. As a result, as the market moves, strike price also moves in order for the option to

be 25D (delta=0.25).

Since option price, underlying spot price, and strike price all move as the market moves, it

is best to summarize the data using moneyness and percentage premium (i.e. scale the strike

price and option premium by the spot price). In Table 1, we summarize for each of the eight

maturities (Panels 1W ∼ 1Y) basic statistics of moneyness (i.e. strike/spot) and option premium

as a percentage of spot (i.e. option/spot). We note that moneyness is near 1 at 50D (50-delta)

for all maturities, as it should.15 As maturity increases, moneyness decreases for in-the-money

13That is, unlike equity options that expire on a Saturday after the third Friday in the expiry month, FX
options always expire a given time to maturity from the trade day.

14We are grateful to the KGI bank for their generosity.
15Both mean and median are 1 with almost no standard deviation.
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options and increases for out-of-the-money options (for example, the average moneyness for 90D

is 0.979 for 1W and gradually decreases to 0.838 for 1Y; and for 10D is 1.020 for 1W and 1.171.)

This is not surprising, because as maturity lengthens, the uncertainty of the underlying spot

increases, and in order for the option to be 90D, strike price has to be lower.16 Same analysis is

applied to low deltas.

[Table 1 Here]

3.2 Risk-Neutral Density (RND)

First of all, we examine the behaviors of the risk-neutral densities (RND). These RNDs are

retrieved from FX options directly (using either equation (4) or (5)). On each day there are 8

RNDs, one for each maturity. Then we can derive the moments as follows:

E[Si] =

∫ x

0
Sif(S)dS

=
∑n

j=0

∫ Kj+1

Kj

Sijf(Sj)dSj

=
∑n

j=0
aj

∫ Kj+1

Kj

SijdSj

=
∑n

j=0
aj

1

i+ 1
Si+1
j

∣∣∣Kj+1

Kj

=
1

i+ 1

∑n

j=0
aj

(
Ki+1
j+1 −K

i+1
j

)
(8)

There have been a series of studies that focus on retrieving skewness from RND, such as

Carr and Wu (2007) and Bakshi, Kapadia, and Madan (2000). Our computation is far more

parsimonious as our RND is piece-wise flat.

It is also convenient to derive the log moments. Let X = lnS. Then,

16One can gain good intuition from the Black-Scholes model. Option price as a function of the underlying asset
is a monotonically increasing convex function. The longer is the maturity, the farther left is the function, which
implies a smaller strike price for the same delta.
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Table 1: Summary Statistics for FX Options’ Delta and Premium

K/S C/S

90D 75D 50D 25D 10D 90D 75D 50D 25D 10D

1-Week

mean 0.979 0.990 1.000 1.010 1.020 0.022 0.013 0.006 0.002 0.001

median 0.980 0.990 1.000 1.009 1.018 0.020 0.012 0.006 0.002 0.001

std.dev. 0.008 0.004 0.000 0.004 0.008 0.008 0.005 0.002 0.001 0.000

skew -1.443 -1.428 1.495 1.582 1.648 1.440 1.436 1.457 1.507 1.574

kurt 3.195 3.236 14.837 3.674 3.770 3.164 3.237 3.295 3.384 3.474

2-Weeks

mean 0.970 0.985 1.000 1.014 1.028 0.031 0.018 0.008 0.003 0.001

median 0.972 0.986 1.000 1.013 1.026 0.029 0.017 0.008 0.003 0.001

std.dev. 0.011 0.005 0.000 0.006 0.011 0.011 0.006 0.003 0.001 0.000

skew -1.301 -1.301 0.226 1.566 1.684 1.297 1.312 1.366 1.469 1.585

kurt 2.560 2.700 6.204 3.540 3.844 2.521 2.703 2.923 3.186 3.460

1-Month

mean 0.955 0.978 1.000 1.021 1.042 0.046 0.027 0.012 0.005 0.001

median 0.957 0.979 1.000 1.020 1.039 0.044 0.026 0.012 0.004 0.001

std.dev. 0.016 0.007 0.001 0.008 0.017 0.016 0.009 0.004 0.002 0.001

skew -1.056 -1.063 -0.119 1.512 1.718 1.054 1.083 1.190 1.375 1.568

kurt 1.530 1.738 5.039 3.231 3.967 1.470 1.712 2.203 2.815 3.407

2-Months

mean 0.936 0.969 1.001 1.031 1.060 0.066 0.038 0.017 0.006 0.002

median 0.938 0.969 1.001 1.029 1.056 0.065 0.037 0.017 0.006 0.002

std.dev. 0.021 0.010 0.001 0.011 0.023 0.021 0.012 0.006 0.002 0.001

skew -0.760 -0.751 -0.803 1.328 1.565 0.767 0.801 0.929 1.151 1.362

kurt 0.576 0.761 2.163 2.398 3.239 0.511 0.745 1.284 1.973 2.572

E[lnSi] = E[Xi] =

∫ x

−∞
Xig(X)dX =

∫ x

−∞
Xi
{
f(S) dSdX

}
dX

=
∑n

j=0
aj

∫ lnKj+1

lnKj

XieXdX

=
∑n

j=0
aj

[
XieX

∣∣lnKj+1

lnKj
−
∫ lnKj+1

lnKj

iXi−1eXdX

]

=
∑n

j=0
aj

[
Kj+1 (lnKj+1)

i −Kj (lnKj)
i
]
− i
∑n

j=0
aj

∫ lnKj+1

lnKj

Xi−1eXdX

=
∑n

j=0
aj

[
Kj+1 (lnKj+1)

i −Kj (lnKj)
i
]
− iE[Xi−1]

(9)
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Table 1 (continued): Summary Statistics for FX Options’ Delta and Premium

K/S C/S

90D 75D 50D 25D 10D 90D 75D 50D 25D 10D

3-Months

mean 0.920 0.962 1.001 1.038 1.076 0.083 0.047 0.021 0.008 0.003

median 0.921 0.962 1.001 1.037 1.071 0.082 0.047 0.021 0.008 0.002

std.dev. 0.024 0.011 0.002 0.014 0.029 0.025 0.014 0.006 0.003 0.001

skew -0.554 -0.528 -1.003 1.178 1.438 0.570 0.602 0.738 0.979 1.200

kurt 0.044 0.201 1.771 1.781 2.669 -0.031 0.176 0.711 1.399 1.963

6-Months

mean 0.885 0.946 1.003 1.056 1.113 0.119 0.067 0.030 0.011 0.004

median 0.884 0.945 1.003 1.056 1.107 0.121 0.068 0.031 0.011 0.004

std.dev. 0.031 0.014 0.004 0.019 0.041 0.032 0.018 0.008 0.003 0.001

skew -0.229 -0.136 -1.161 0.869 1.183 0.276 0.280 0.385 0.645 0.893

kurt -0.675 -0.613 1.473 0.612 1.564 -0.751 -0.634 -0.245 0.380 0.885

9-Months

mean 0.859 0.934 1.004 1.071 1.144 0.145 0.081 0.037 0.014 0.005

median 0.858 0.932 1.005 1.071 1.137 0.148 0.084 0.038 0.014 0.005

std.dev. 0.034 0.016 0.005 0.023 0.051 0.035 0.020 0.009 0.004 0.001

skew -0.108 0.031 -1.106 0.749 1.128 0.180 0.168 0.255 0.523 0.794

kurt -0.882 -0.894 1.183 0.205 1.269 -0.962 -0.898 -0.580 0.042 0.552

1-Year

mean 0.838 0.925 1.006 1.084 1.171 0.166 0.093 0.042 0.016 0.005

median 0.837 0.923 1.007 1.084 1.165 0.170 0.096 0.044 0.016 0.005

std.dev. 0.037 0.017 0.007 0.026 0.059 0.038 0.021 0.010 0.004 0.002

skew -0.045 0.121 -1.044 0.660 1.087 0.135 0.107 0.171 0.443 0.726

kurt -1.005 -1.043 0.930 -0.051 1.051 -1.075 -1.046 -0.794 -0.187 0.321

Hence, this is a recursive equation where the i-th moment is dependent upon all the previous
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moments. Note that when i = 0, the function yields the probability function as follows:

E[X0] = 1 =
∑n

j=0
aj [Kj+1 −Kj+1] (10)

which proves that the probability masses sum to 1.

One empirical problem in retrieving the RND is that it is inevitable to have negative probabi-

lities. Malz (2014) has an excellent demonstration as how inevitable this can happen. Cincibuch

(2004) reaches a similar conclusion (called ghost-smile). Burgin and Meissner (2012) argue that

the risk-neutral probabilities can be negative as they are “pseudo” probabilities which have

no meaning except for computations of derivative prices. Haug (2004) also acknowledges this

problem in a much broader context.

Theoretically, negative probabilities seem impossible. Yet, in the mathematical literature,

negative probabilities are well understood. In a pseudo way, negative probabilities are used

for the facilitation of computations. According to Wikipedia, “In 1942, Paul Dirac wrote a

paper ‘The Physical Interpretation of Quantum Mechanics’ where he introduced the concept

of negative energies and negative probabilities: ‘Negative energies and probabilities should not

be considered as nonsense. They are well-defined concepts mathematically, like a negative of

money.’”

In a sate price theory, Arrow-Debru prices are similar to discounted risk-neutral probabilities.

As a result, risk-neutral probabilities must be non-negative when the discount rate is a constant.

If discount rates are stochastic (i.e. state-dependent discount rates), then a negative probability

for a particular state must be “balanced” by a negative discount rate of the same state in order

to preserve a positive Arrow-Debru price of the state (in order to avoid arbitrage). In other

words, negative risk-neutral probabilities can exist as long as discount rates are stochastic.

As a result, there is no theoretical reason that an RND cannot have negative densities

(provided that discounts are negative in the corresponding states). Negative discount rates

represent negative risk premiums (assuming non-negative risk-free rate). In our empirical results,

we discover that in some periods probabilities are so negative that the second and fourth moments

are negative. This indicates that most of the states have negative risk premiums in these periods.

To be clear later in our empirical results, the second moment is negative during the pre-Lehman

crisis (real estate bubble) period and the negative fourth moment occurs in the pre-Lehman

crisis period and the pre-european crisis period. These periods enjoy super prosperity (bubble)
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and then followed by crashes. In summary, the moments generated from RND have implications

on risk premiums.17

Figure 2 plots various moments of the RND. Panels A, B, and C plot un-centralized va-

riance, skewness and kurtosis of the piece-wise flat RND respectively. We choose to use the

un-centralized moments as opposed to the usual centralized moments (which are variance, skew-

ness, and kurtosis) in that these are straightforward power functions of the underlying variable as

opposed to a mixture of various powers of the underlying variable. As a result, the information

carried in these un-centralized moments is much cleaner than the usual centralized moments.

We see that the term structure the moments (M2 ∼ M4) co-vary with the swap curve (Panel

D) amazingly well. This is surprising in that these are two distinctly separate markets. Yet

option investors form their subjective RNDs in the same manner as the FX swap investors. As

the second (M2) and fourth (M4) moments move down (or third moment (M3) moves up), the

swap spreads move down.

[Figure 2 and Table 3 Here]

Table 3 summaries Figure 2 quantitatively, as we can see different moments of the RNDs of

different maturities are highly correlated. They are also individually highly correlated with FX

swap spreads. We note that skewness is the most highly correlated moment with the FX swap

spread. Other than 1W and 2W, the skewness dominates other moments in explaining FX swap

spreads at all the other tenors. The correlation of skewness and FX swap spread is generally

negative (with the only exception of 1W but the magnitude is so small that it is insignificantly

different from zero). Also interesting is the kurtosis correlation with the FX swap spread. The

correlation between kurtosis and FX swap spread is only slightly less than that between skewness

and FX swap spread, and the magnitude is positive.

The second and fourth moments, like variance and kurtosis, are generally regarded as market

17As a robust check, we also fit a piece-wise linear RND and a cubic-spline RND. When we replace the piece-
wise flat RND with a piece-wise linear RND or cubic-spline RND (both are described in the Appendix), the
problem of negative probabilities alleviates (but not totally resolved); and yet two other problems emerge. First,
the patterns of the moments we observe in piece-wise RND disappear and second, the shape of RND becomes
unstable (change radically), which is the evidence of over-fitting. As a result, it seems to be the tradeoff between
potentially under-fitting (polynomial with power of 0 – piece-wise flat) which results in more negative probabilities
but stable and over-fitting (polynomial with power of 1 – piece-wise linear and polynomial with power of 3 – cubic
spline) which results in fewer negative probabilities but unstable. As noted, empirically, the behavior of piece-wise
flat performs best. The results of the robust check are available upon request.
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Table 3: Correlation Results

(a) Correlations among Moments

tenor 1W 2W 1M 2M 3M 6M 9M 1Y

varn. vs. skew. -0.927 -0.92 -0.828 -0.708 -0.649 -0.603 -0.585 -0.567

varn. vs. kurt. 0.865 0.903 0.856 0.791 0.767 0.772 0.795 0.815

skew. vs. kurt. -0.983 -0.989 -0.989 -0.983 -0.976 -0.96 -0.94 -0.917

(b) Correlations with FX swap spreads

tenor 1W 2W 1M 2M 3M 6M 9M 1Y

variance -0.168 -0.148 -0.012 0.124 0.215 0.395 0.486 0.536

skewness 0.042 -0.099 -0.447 -0.71 -0.813 -0.912 -0.932 -0.934

kurtosis -0.097 0.023 0.364 0.626 0.732 0.85 0.882 0.892

and tail risks respectively and the third moment (or skewness) as market sentiment.18 The

negative correlation between the third moment and either the second or fourth moment validates

this common wisdom. Given that FX swap spreads usually are also regarded as risk premiums,

the high positive correlation between skewness and swap spreads produced by the piece-wise flat

RND is stimulating.

3.3 Information Contents of RND

Ever since Chiras and Manaster (1978) and Figlewski and Canina (1993), studies of the forward-

looking density parameters have attracted academic and practical attentions. Instead of studying

the implied volatility that is based upon the Black-Scholes model, the entire density function

has been retrieved to study the risk and behavior of the underlying asset. In other words, RND

has replaced the implied volatility to retrieve information from the market. The disadvantage

of using the implied volatility is that it absorbs all information about the underlying asset into

one single parameter. On the contrary, more detailed information can be learned from RND.

In particular, the second moment is risk and the third moment is generally regarded as risk

18The third moment (or skewness) under the real measure is regarded as risk premium (in other words, even
there is no skewness under the risk-neutral measure, under the real measure there would be skewness due to risk
aversion – investors hate losses more than they like gains). Under the risk-neutral measure, it does not represent
risk premium but indicates how future movements are likely to be.
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premium. The fourth moment is tail risk which can be regarded as a fear index similar to the

VIX index. In a way, we can regard RND as decomposition of the implied volatility into finer

categories.

3.3.1 Risk Premium

Breuer (2011) argues that the volatility of (implied) volatility connects closely to risk premium.

Given that this measure is not contemporaneous (i.e. cannot be measured synchronously with

the volatility), we use skewness as an alternative proxy. It has been recognized that the volatility

of volatility can drastically skew the distribution of the underlying asset. That is, even if the

distribution of the spot is symmetric (i.e. zero skew), stochastic volatility can result in skewness

for the underlying asset under the risk neutral measure. It is then robust to use the risk-neutral

skewness as an alternative proxy to evaluate risk premiums.

Risk premiums of foreign exchange (FX) rates can be directly observed from the FX swap

spreads.19 The basic intuition is that banks use FX swaps as a tool to borrow either U.S. dollars

when facing funding difficulties. Therefore, assuming that the financing liquidity (supply) is

stable at the overnight interest rate market, a surge or drop of this spread is a consequence of

the change of perceived risk (and hence risk premium). For example, if financial institutions

need USD for financing, they sell the euro spot and buy the forward. Through the transaction,

the demand of emergent funding leads to a higher EUR/USD forward price than the spot price

and leads to a positive spread (forward minus spot). The results are reported in Table 4.20

There are 8 panels in Table 4, from 1W to 1Y, for 8 options with different maturities of

any given day. Throughout all tenors, M3 is consistently significantly negative on the FX swap

spreads. Yet, the significance is more pronounced for shorter tenors (t statistics are -13.99, -17.5,

19Literature has documented that FX swap spreads and violation of related parity condition have been used
as a measure for the credit risk premium, i.e., Baba and Packer (2009). The swap spread here is calculated or
approximated as lnF − lnS where F and S represent forward and spot prices respectively. Under no arbitrage, it
should equal rd−rf where rd and rf represent domestic (US) and foreign (euro) interest rates respectively that are
used in calculating RNDs. Hence, a violation of the no arbitrage condition is regarded as a credit risk premium.
However, when interest rates are stochastic, lnF − lnS does not necessarily equal rd − rf due to interest rate risk
premium. As a result, the two types of risk premiums are hard to distinguish from each other. For this reason,
we use the whole swap spreads in our regressions. As a robust check, we also run regressions over spreads that are
adjusted for rd−rf . Our result shows that M3 and M4 continue to be significantly and negatively correlated with
the adjusted spread for all tenors. The regression result is available upon request. There are market participants
who trade on such risk premiums, known as the carry trade.

20The reported t statistics are adjusted by Newey-West variance-covariance matrix estimation.
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and -12.37 for 1W, 2W, and 1M respectively) than for longer tenors (t statistics are smaller,

between -3.49 and -5.60). Furthermore, Figure 2 confirms that the term structure of M3’s moves

consistently with the term slope of the spread curve. When the spread curve is upward sloping

(e.g. spot > forward, mainly starting 2012 till recent), M3 is negative and when it is downward

sloping (e,g, spot < forward at 2008), M3 is positive.

Table 4: FX Swap Spread Regression

SPRD 1W SPRD 2W SPRD 1M

Coef t stat Coef t stat Coef t stat

a -3.655 -9.23 a -6.4124 -12.94 a -11.007 -16.2
M2 -6526.9 -3.23 M2 2849.23 0.84 M2 -943.2 -0.61
M3 -35335 -10.58 M3 -31156 -12.95 M3 -24640 -12.37
M4 -20836 -13.99 M4 -24511 -17.5 M4 -14732 -10.06
IV -892.41 -0.28 IV -13010 -2.32 IV -4371.1 -1.81
# 1847 # 1847 # 1847

adj. R2 64.38% adj. R2 72.25% adj. R2 72.26%

SPRD 2M SPRD 3M SPRD 6M

Coef t stat Coef t stat Coef t stat

a -12.74 -12.62 a -11.308 -8.63 a -9.5894 -5.18
M2 -4802.1 -4.06 M2 -5750.7 -5.92 M2 -3025.9 -3.79
M3 -10308 -5.6 M3 -4771.9 -4.17 M3 -1818.8 -3.59
M4 1162.28 0.76 M4 6333.36 5.58 M4 6275.98 8.95
IV 2630.71 1.39 IV 4247.24 2.71 IV 364.549 0.29
# 1847 # 1847 # 1847

adj. R2 79.25% adj. R2 83.86% adj. R2 89.21%

SPRD 9M SPRD 1Y

Coef t stat Coef t stat

a -5.8833 -2.23 a -0.8901 -0.25
M2 -1739.5 -2.15 M2 -542.13 -0.68
M3 -1310.7 -3.49 M3 -1241.9 -4.02
M4 5424.03 8.24 M4 4415.84 7.14
IV -1275.4 -1.01 IV -2833.6 -2.34
# 1847 # 1847

adj. R2 90.43% adj. R2 90.83%
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The decrease of the significance of M3 (as the tenor increases) indicates that the “skew risk”

is more of a short term phenomenon. For long horizons, “tail risk” takes over and becomes more

dominant. We note that, for shorter tenors, M4 has roughly the same significance as that of

M3 and yet for longer tenors M4 dominates M3. Given that that rare events are priced by M4,

our results indicate that they are more priced in longer terms than in shorter terms, as in the

short run the anticipation/likelihood of rare events is small. This is consistent with the rare

event premium identified by Liu, Pan, and Wang (2005) and the disaster risk premium by Barro

(2009).

We notice that for the three shortest tenors, M4s are negatively significant; but for longer

tenors M4s are positively significant. We hence hypothesize a “clientile effect” in the FX market.

For the short run, financial firms trade for short term profits but in the longer term, industrial

firms hedge their foreign currency exposures with deep out-of-the-money (OTM) options. As a

result, M4 carries the same sign as M3 for short tenors (1W, 2W, and 1M) to reflect the risk

premiums born by financial firms. Yet for long tenors (2M ∼ 1Y), as industrial firms dominate

in hedging their currency exposures, the sign depends on net imports to exports of the U.S. with

respect to the E.U.

To support our hypothesis of the “clientile effect”, we present Figure 3 which demonstrates

that the U.S. always imports more than exports to the E.U. and the average net importing

amount is about $10 billion every month.21 This indicates that E.U. exporters are exposed to

USD currency risk and shall purchase OTM options to hedge. As the OTM options regard only

tail risk, this strong hedge force from the E.U. turns the sign of M4 from negative to positive.22,23

That is, for long-term tenors, the positive spread (forward minus spot) implies higher future

EUR/USD exchange rate, positively correlating to hedge behavior of E.U. exporters.

To measure this “clientile effect”, we regress the changes of monthly M4s for each tenor over

the net changes of the U.S. imports from the E.U. (controlling for lags (lag1 ∼ lag4)) and over

21Trade in Goods with European Union: https://www.census.gov/foreign-trade/balance.
22As the LC (letter of credit) will be cashed into the account in 30, 60 and 90 days, those companies tend to

hedge with corresponding tenors, i.e, 1M, 2M, 3M and 6M. Galat and Schreiber (2013) uses a unique database
to show that the corporate tends to take long position of deep OTM options with the average of 97 days to
expiration, while finance firms tend to trade short length contracts, i.e, the average is 40 days, without strong
preferences over long/short positions. All of these indicate, in contrast to 1W or 2W tenor, longer tenors are
traded more by industrial companies.

23To our knowledge, European exporters either buy 1M-6M EUR/USD forward or buy OTM call options
to hedge their USD exposure, and a symmetric (opposite) hedge is performed by their counterparties (U.S.
importers), causing M4 to change signs.
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the changes of spreads of corresponding tenors.24 We show that the demand for future exports

has a strong impact on options but less so on FX swap spreads. The results are listed in Table 5.

As we can see, the future net exports to the U.S. affects M4 much more than past net exports,

and 1 to 3 month ahead exports most significantly influence today’s M4. However, in panel (b)

of Table 5, we do not find net exports from the E.U. to significantly affect the spreads. These

results indicate that, for longer tenors and positive FX swap spread, the demand of hedging

from industrial companies can also drive M4s higher.

Our hypothesis of the “clientile effect” is similar to Han (2008) who uses sentiment to explain

the volatility smile. Our RND results confirm that different risk attitudes between financial

firms and industrial firms would result in different behaviors of RND moments at different

tenors. In the case of EUR/USD exchange rates, longer tenor moments are informative in

explaining currency exposures of exports and imports while shorter tenor moments help explain

risk premiums better.

[Figure 3 Here]

[Table 5 Here]

Our results also shed light on volatility/variance risk premiums. Carr and Wu (2009) de-

monstrate that riskier stocks (i.e., higher beta and smaller size stocks) commonly have higher

volatility risk premiums. They argue that investors of those stocks want to pay a higher pre-

mium to hedge an adverse stock movement, implying that the volatility risk tends to positively

correlate with stock returns. Bollerslev, Tauchen and Zhou (2009) empirically show a positive

relation between stock returns and variance risk premiums.25 We argue that M4 (kurtosis) and

M2 (volatility) increase the risk premium for people who consider holding euros as an investment

asset, and higher M2 and/or M4 lead to a negative swap spread. Symmetrically, people who

consider holding U.S. dollars as their investment also require risk premiums for holding U.S.

dollars, resulting in positive swap spread.

It is interesting to note that the Black-Scholes implied variance (IV) performs poorly in

explaining swap spreads. The coefficients are only marginally significant. This indicates that

RND moments can explain risk premiums better than the implied variance. Although some

24Given that net E.U. export data is monthly, we average daily M4s and spreads to calculate monthly.
25Also the implied volatility.
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regression coefficients for the IV are significant, the significance is marginal and only a fraction

of those of M3 and M4. For example, the most dominant case is 1W spread where the t statistic

for the IV is -0.28 and yet the t statistics for M2 ∼ M4 are -3.23, -10.58, -13.99 respectively.

Similar dominance can be found in the case of 6M spread. It is clear that RND moments carry

much more valuable information than the IV.

Finally, we note that R-squares are increasing with tenor. This is perhaps the most in-

teresting result (somewhat surprising) which could be due to the fact that trading behavior of

exporters who are not sensitive to short term market changes (hence less volatile). The R-squares

are strictly monotonic increasing from 64.38% for the 1W regression to as high as 90.83% for

the 1Y regression. In the case of 1Y regression, M4 is the most powerful explanatory regressor

(t statistic is 7.14), then M3 (t statistic is -4.02), and finally IV (t statistic is -5.80).26

In conclusion, by using FX RND higher order moments, we show FX options market contains

richer economic information. Unlike Carr and Wu (2009), Bollerslev, Tauchen and Zhou (2009),

and Kozhan, Neuberger, and Schneider (2013) who clearly define risk premiums under a specific

moment, we study the intricate relationship between M3 and M4 and their impacts on risk

premiums (proxied by FX swap spreads). Our results are astounding in that both M3 and M4

explain FX swap spreads, but at different magnitudes at different tenors. We also find M4

to switch signs which is consistent with the hypothesis of the export/important relationship

between the U.S. and the E.U.

3.3.2 Prediction of Future Variance, Future Exchange Rate, Economic Policy Un-

certainty, and Currency Influence index

As mentioned in the Introduction, RND has been proven effective in predicting (1) future un-

derlying price movements; (2) future option prices; (3) future realized volatility/variance; and

(4) future distributions of the underlying assets. Yet, this evidence has been predominantly on

stock indexes (e.g. Gemmill and Saflekos (2000), Khrapov (2014), Jiang and Tian (2005), and

numerous others.

Some limited evidence has been provided over currencies. Using earlier data, Christensen

and Prabhala (1998), Jorion (1995), and and Xu and Taylor (1994) study volatility forecasts.

In addition to forecasting volatility, Christoffersen and Mazzotta (2005) also forecast density for

26M2 is not significant (t statistic is -0.68).
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the period from March 31, 1992 to February 19, 2003. More recently, Chen and Gwati (2012)

who predict underlying FX rates from January 1, 2007 to April 19 2011.

Our study adds to the literature in the following obvious ways. We discover that RND

contains a lot more prediction power than future volatility and underlying asset price movements.

We confirm the prediction power of the literature in forecasting volatility and underlying price

movements. In addition, we find that RND can be used to predict macro environment that

implied volatility cannot. For example, RND leads economic policy uncertainty (Baker, Bloom,

and Davisc (2016)) and currency influence index (Alter and Beyer (2014)) which in turn lead

IV (implied variance).

Prediction of Underlying Price Movements

We first examine if RND can predict future movements of the underlying asset. To test this

hypothesis, we run regressions of the changes of exchange rates on the changes of explanatory

moments (M2 ∼M4) and implied variance (IV). For example, we let the changes of 1W moments

and IVs at time t predict the exchange rate changes at t+ 1. The results are reported in Table

6.

[Table 6 Here]

First of all, we report that RND moments always provide supplemental predicting powers to

a time-series forecasting model. As we find out that the EUR/USD exchange rate demonstrates

strong return auto-correlation (i.e. highly significant Lag1 delta τ spot coefficients for various

tenors where τ represents a tenor), we show, after controlling the lagged 1 ∼ 4 spot returns,

RND moments are always significant in predicting future FX returns.

Horse-racing with IV, RND moments dominate IV for short tenors (1W, 2W, 1M and 2M).

Take 1W and 2W as examples, the t statistics for IV are 6.13 (1W) and 1.40 (2W) and those

for M2 ∼ M4 are -6.38, -6.82, and -6.86 respectively for 1W and -0.56, -11.69, and -11.55

respectively for 2W. As pointed out just now, M3 (risk premium) and M4 (tail risk) all have

negative coefficients which are consistent with the hypothesis that . (Negative skew lead to

higher risk and positive return.) Yet IV has a positive coefficient and significant.

We focus our analysis particularly on M3. We note that M3 is consistently significantly

negative throughout all tenors whereas coefficients for M2 and M4 are not so (M2 coefficients
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are generally significantly negative but not for 1M which is significantly positive and 2M which

is positive but insignificant. M4 coefficients are significantly negative for short tenors 1W ∼ 3M

but turn significantly positive for long tenors 6M ∼ 1Y.2728) On the contrary, we find that the

coefficients for IV are significantly positive in nearly all cases (except for 2W). We can see that

M3 continues to outperform other explanatory factors (M2 and IV in particular), which is same

as the previous subsection.

Further examination of the results reveals that while M3 is statistically significant for all

tenors, it dominates IV and other moments for short tenors (1W ∼ 2M) but is dominated by

IV and M2 for longer tenors (3M ∼ 1Y). We also discover that M4 behaves closely to M3 and

is more important to explain short-term exchange rate changes. The t statistics for M3 and

M4 (compared to those of M2 and IV) are -6.82 and -6.86 (compared to -6.38 and 6.13) for

1W; -11.69 and -11.55 (compared to -0.56 and 1.4) for 2W; -9.66 and -11.05 (compared to 3.15

and 2.0) for 1M; -9.93 and -9.05 (compared to 0.71 and 4.78) for 2M. On the contrary, for long

tenors, 2M and IV are more significant in predicting future exchange rate changes (-2.56 and

6.65 compared to -3.07 and -2.24 for 3M; -11.81 and 12.46 compared to -4.85 and 2.68 for 6M;

-15.02 and 17.45 compared to -5.11 and 3.09 for 9M; -16.61 and 20.35 compared to -7.46 and

5.46 for 1Y).

It is understandable that the significance of M3 is decreasing with tenors (that is prediction

power is weaker as prediction horizon becomes longer.) This is because those sudden (symmetric

or asymmetric) discontinuities of trades (jump) that cause skewness become a relatively minor

issue in the long run.

Prediction of Macro Environment

Different from other assets, exchange rates reflect relative economic strengths of two nati-

ons. As a result, RND moments implied by FX options should carry information about the

macroeconomic conditions of the two nations. In this sub-section, we investigate if RND carries

information of two important macro indexes: economic policy uncertainty (EPU) index and ex-

change rate spillover effect (USD influence index). The EPU index is proposed by Baker, Bloom,

and Davisc (2016)29 who use newspaper coverage frequency to measure the policy-related econo-

27This could be resulted from exporters behavior. As ordering increases, part of exporters buy OTM call
EUR/USD options to hedge which leads to a increases of M4, while other exporters who do not hedge just sell
dollar and buy euro once the LC is eligible to cash in. The increased demand for euros drives up EURO/Dollar
exchange rate.

28This is consistent with the clientile effect examined earlier.
29They have a web site to share the EPU index. (http://www.policyuncertainty.com/index.html)
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mic uncertainty. If the FX options market is efficient, then those implied moments should reflect

macroeconomic issues. We are also interested in knowing if RND can predict the spillover effect

of USD to other countries’ exchange rates. Alter and Beyer (2014) use the VAR (Vector Auto

Regression) impulse response function to quantify spillovers between sovereign credit markets

and banks in the E.U. Given option prices contain forward looking information, we expect the

implied moments to be highly correlated with those two indexes and can even forecast both

indexes.

Figure 4 presents the EPU index, IV and different implied moments in our sample period.

As observed, the index is positively correlated with IV, M2, M4 and negatively correlated with

M3.

[Figure 4 Here]

Using the Granger causality test, we examine the prediction ability between RND moments

and the EUP index. We test if the EPU index can be forecasted by following groups: (1) term

structure of IVs (2) term structure of M2s (3) term structure of M3s (4) term structure of M4s

(5) 1-week moments (6) 2-week moments (7) 1-month moments (8) 2-month moments (9) 3-

month moments, respectively. And, we also test reversely if those groups can be forecasted by

EPU index.30 The results are summarized in Table 7.

[Table 7 Here]

We discover that the term structures of M2s, M3s, and M4s can predict (Granger-cause) the

EPU index, but not vice versa. On the contrary, the term structures of IVs is Ganger-caused

by the EPU index. In other words, IV is not a good predictor (worse than RND moments) of

the EPU index.

Within the RND moments, we find that M3s and M4s have larger powers than M2s do in

rejecting the hypothesis that the EPU index doesn’t have an influence. Furthermore, RND

moments of shorter tenors (e.g., 1-week, 2-week and 3-week) predict the EPU index better than

moments of longer term tenors. This indicates that the EPU index is more related to short-term

30We run Granger test from lag 1 to lag 10. The results are similar in the sense that the RND tends to have
prediction power over EPU and influence indexes, but the reverse is generally not true. Here we only show the
results of lag 6 for the EPU index and lag 1 for the Influence Index.
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economy turbulence. As mentioned earlier, the reverse does not hold – no evidence supports

that the EPU index can predict RND moments of any particular tenor.

For the spillover effect, we use the USD influence index constructed by Zhou, Wang and

Cheng (2016) who adopt the methodology by Alter and Beyer (2014). The following currencies

from the developed countries are chosen in our sample: US dollar, European euro, Japanese yen,

British pound, Swiss francs, Canadian dollar, Australian dollar, Chinese yuan, and Hongkong

dollar. We run VAR for the exchange rates of U.S. dollar against these currencies.31 The USD

influence index is created by adding up all the response functions in the VAR.

A higher spillover effect means that the changes of the USD exchange rates with the chosen

countries influence more strongly the changes of the exchange rates among these countries. The

higher influence of one country over other countries implies lower effectiveness of diversification.

As a result, the hedge demand and hedge cost increase.32

In Figure 5, we show the USD influence index and 1-month M4. We find a one-time increases

at 4Q 2008 for U.S. exchange rate influence index, and their co-movements still can be observed

after 2008. We take the first order difference of the spillover index to remove the one time fixed

effect and show the change of the index in the bottom chart.

[Figure 5 Here]

As reported in Table 8, the Granger causality test results reveal that, similar to the EPU

index, the term structures of M2s, M3s, and M4s can predict the USD influence index; but not

reversely. Also similar to the results of the EPU index, the term structure of IVs is affected

by the USD influence index. This indicates that RND moments, but not IV, are capable of

forecasting the USD influence Index. RND moments can predict the USD influence index; yet

interestingly, for longer tenors (e.g., 3-month, 6-month, 9-month and 1-year), supported by the

rejection of the null hypothesis that the USD influence index cannot predict RND moments (at

increasing probabilities as tenors get longer). This implies that the change of the USD influence

index is more related to long-term fundamental issues.

[Table 8 Here]

31The details of the VAR are available from the authors upon request.
32The diversification issues on options pricing are discussed extensively by Jarrow, Lando and Yu (2005) and

Amin (1993).
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In summary, using Granger causality test, we discover that RND moments have prediction

powers of both EPU and USD influence indexes; yet the reverse is not true. On the contrary,

both indexes Granger-cause IV but the reverse is not true. Furthermore, short term RND

moments have higher a power to predict the EPU index and long term moments have a higher

power to predict the USD influence index.

Prediction of Future Volatility

It is a popular exercise to see if the implied volatility carries any prediction power of future

realized volatility. The literature on information content in implied volatility postulates that

implied volatility, since it is computed off option prices, contains forward-looking information

and hence should be a good predictor of future realized volatility. Also in the literature is

that under stochastic volatility, implied volatility also carries volatility risk premium and hence

should be higher than realized volatility.

Prediction of realized volatility is analyzed via a set of regressions of various predictors on

the realized volatility. In each regression, the realized volatility is the dependent variable and

the independent variables are: Black-implied volatility and the second through fourth moments

of RND using equation (9). The results are presented in Table 9.

[Table 9 Here]

In order to match the tenor of the implied volatility or an RND moment, each realized vola-

tility is computed using the hold period equal to the corresponding tenor. For example, in the

1W regression, since the volatility is forward-looking for the next 5 business days, the realized

volatility is calculated 5 business days after the date of the observed implied volatility. Same

applies to other tenors. Also, the realized variances (RZ VAR) are computed using exchange

rates (level) in order to be comparable to the RND moments that are also computed off exchange

rate levels. For the Black’s implied variance (IV) to also be comparable, we must do the follo-

wing adjustment. Note that IV is computed under the assumption of log-normally distributed

underlying exchange rates, and hence the adjustment is computed as follows:

ζ2τ = σ2τ S̄
2
τ

where στ is the Black’s volatility over the same horizon τ as that of the RND and S̄τ represents

the average of the exchange rate levels over the horizon τ , and τ is from 1W to 1Y (8 maturities)
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as indicated in Table 9.

Once again, Black’s implied variance (after adjustment by the level) is dominated by the

moments. However, interestingly it is not dominated by M2 but rather M4. Out of 8 cases, IV

is dominated by M4 in 5 cases (1W, 2W, 3M, 6M, and 9M); by M3 in 4 cases (1W, 2W, 6M,

and 1Y); and by M2 in 3 cases (1W, 6M, and 9M).

In general, M4 is the best predictor (significance in 7 out of the 8 cases), followed by M3

(6 cases) and IV (6 cases). Interestingly M2 is the worst performer (significance in 4 out of

8 cases). We note that the moments are non-centralized and hence are not impacted by the

expected value of the underlying exchange rate (while IV and the realized variance are).

The power of prediction (measured by adjusted R-squares) increases as the time horizon

increases (except for 1Y which is less than 9M, but still greater than 6M). This indicates that

short term noises reduce the prediction power. As longer horizons are considered, noises are

averaged out, prediction powers improve.

Finally, a minor but worthy point is that M4 signs are positive for short horizons but negative

for long horizons. Again, this is consistent with the “clientile effect” discussed in a previous sub-

section (also footnotes 27 and 28). Other predictors have changed signs quite randomly.

3.3.3 Explanatory Power of Major Events

In this section, we follow the literature and examine how our results could provide insights on

major events in the Euro zone. Gabaix et. al. (2016) uncover that since the Fall of 2008, “crash

risk” has increased dramatically, implied by the FX options data.

We compare the moments of the RND with the Black-implied variance (IV) on major eco-

nomic events. As a benchmark, we also present the VIX series as the VIX index is an indicator

of “fear” and reacts sensitively to major economic events. VIX and IV are plotted in Figure 6.

In each panel, there are 8 time series corresponding to 8 maturities.

[Figure 6 Here]

Similar to Figure 2, in each panel, we use shaded areas to denote the time windows from

pre-crisis to middle-crisis. The first shaded area refers to the 2008 Subprime Crisis starting from
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the Bear Stearns event33 to the Citi rescue plan.34 The second shaded area is the European

Sovereign Crisis, as we use the date of April 6, 2011, when Portugal asked for financing help to

denote the beginning of the crisis. We use the October 21 announcement date for Greek second

bailout plan from the E.U. as the last day of second shaded area. Finally, the Flash Crash

happened in May 6, 2010, which is marked by a dark vertical line between two crises.

We first compare IVs from Figure 6 with M2s from Figure 2, we see close co-movements

between the two sets of series. Both sets of series are high at the Subprime Crisis (2008-9),

Flash Crash (2010), and the European Sovereign Crisis (2011-2). Finally, they both start to

increase at the beginning of 2015. However, there are notable differences between the two.

M2s of various tenors reach their peaks at the European Sovereign Crisis (2011) but are very

closely followed by the Flash Crash (2010) and the Subprime Crisis (2008). On the contrary,

IVs reach their peaks at the Subprime Crisis and are mild during the Flash Crash and the

European Sovereign Crisis (this is because the levels remain high throughout the entire period).

Furthermore, M2s during the pre-Subprime-Crisis period and the pre-European-Sovereign-Crisis

period are either close to 0 or barely positive but the IVs are very high. This result indicates that

the second moment of the RND is more sensitive to drastic events than Black-implied variances.

While disastrous events are easy to spot visually graphically (as in Figures 2 and 6), we

need to further quantify them so that we can examine if the moments from the RND have any

explanatory powers of rare events. To do that, we use the VIX index as a proxy for large events.

We provide two sets of regression results. The first one is VIX(t) on M(i, t) where i = 2, 3, 4

representing the i-th moment; and the second one VIX(t) on M(i, t−22) which the VIX index is

approximately lagged by one month (we use 22 observations to approximate a month). In both

sets of regressions, the Black-Scholes implied variance (IV) is used as a control variable.

The results are summarized in Table 10. We find that lagged regressions have more significant

moments than concurrent regressions, indicating that moments lead the VIX index and hence

have predicted powers of large events (proxied by the VIX index). This is true for all tenors,

even after controlling for the implied variance (IV). For example, for the 1-week tenor, the t

statistics of M2 ∼ M4 are 3.66, 3.83, and 4.07 respectively in the concurrent regression versus

9.45, 9.92, and 9.81 respectively in the lagged regression. Similar observations are made for

33On March 14, 2008, Bear Stearns’ shares plummeted, and it was quickly acquired in two days by JPMorgan
Chase for 2 dollars per share.

34At October 3, 2008, the Fed initiated a $700 billion TARP, Troubled Assets Relief Program to purchase failing
bank assets, plan, and gave out 33.6 billion to 21 banks in the second round of disbursements. Later on November
24, the U.S. government agreed to inject another 20 billion of capital into Citigroup.
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other tenors. We also find that the significance of the implied variance is weaker in the lagged

regressions than in the concurrent regressions, which suggests that moments are less influenced

by IV in the lagged regressions.

Furthermore, we note that in general the significance levels are higher for longer tenors than

in shorter tenors. This could be due to the effect that the moments of shorter tenors tend to be

more noisy and hence carry less information (larger standard errors).

[Table 10 Here]

3.3.4 Conclusion

Our main focus of this section is the explanatory powers of the M3s and M4s. In contrast to the

M2s, the M3s and M4s do not have any change for the Flash Crash crisis. This is interesting in

that Flash Crash is not considered as a tail risk event (M4), nor does it add any risk premium

(M3), by investors. As a consequence, it is not priced. In hindsight, this result is amazingly

accurate as Flash Crash has hardly any impact on the economy.

One particularly interesting and insightful result is that the M3s present enormous negative

risk premium during the pre-crisis periods – reflecting excess risk taking during the bubble

periods (Subprime and European crises). It is more so for the real estate bubble before the

Subprime crisis than the period before the European Sovereign crisis, as the real estate bubble

is more severe. Similarly, M3 reacts more severely to the European Sovereign crisis than to the

Subprime crisis as our underlying asset is the EUR/USD exchange rate. Also note that this

behavior of M3 is quite different from M2 (or IV or VIX), as it should.

Another interesting observation of M3 is that it does not become negative (i.e. positive risk

premium) right at the crisis but lag by a few months. And also note that, during the Subprime

Crisis, long and short tenors are drastically different – long M3s are positive but short dated

M3s are negative – meaning that for the short term investors charge high risk premium but long

term investors are still optimistic.

M4 tells a similar story (but simpler) to M3 that there are two high tail risk events – Subprime

Crisis and European Sovereign Crises. Also before each crisis there is a negative risk build-up.
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Our results on M3 and M4 shed some light on the rare event premium by Liu, Pan, and Wang

(2005).

Lastly, we examine the term structures of the RND moments. The term structures of M2s

∼ M4s are either negatively sloped or flat prior to the Subprime Crisis and European Sovereign

Crisis and not Flash Crash. This indicates that the moments of the RND provide a warning

signal for a major economic event, and is an ex-ante measure for the expected market turmoil.

In summary, we find that the moments from the RND carry much more, better, and subtle

information than IV and VIX. Especially we find that Flash Crash is not an event by the

moments of the RND but both IV and VIX spiked. Also the shape of the term structure of

moments seems to provide a warning signal of a major economic event.

3.4 Comparison to Parametric Models

RND is generally regarded as a non-parametric method (if ignoring the choice of a polynomial

function) and hence is model-free. In this section, we compare some implications from RND

with those of parametric models, mainly the classical Black-Scholes model and the Heston model

(stochastic volatility). We also estimate Cox’s CEV (constant elasticity of variance) model using

RND (as opposed to historical series of the underlying asset). Through these comparisons, we

hope to shed light on what is the information gain using RND as opposed to those parametric

models.35

3.4.1 Term Structure of Volatility

Derivatives pricing professionals have been trying to develop proper pricing models for more

than 40 years now. The crucially necessary condition is for the model to simultaneously price

all options (cross maturities and strikes) correctly. In other words, the ultimate task for an ideal

model is to be able to explain the Black-implied volatility surface.36 Given that RND auto-

matically price options with different strikes perfectly, we now need to examine how differently

RNDs with different maturities imply the volatility term structure.

35We note that the Heston model, combined with the smile capability, is proposed by a number of financial
companies, such as Bloomberg and Fenics, as the standard model to evaluate currency options.

36This is because many options are quoted in Black volatility.
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We calculate the expected total variance E
[
∫Tt V (u)du

]
for each given maturity. In the

Black-Scholes case, it equals σ2(T − t) which is proportional to time to maturity. In addition to

the Black-Scholes case, we also look into another popular model – the Heston model with the

square root stochastic volatility. The Heston model is described in details in the next section

where we estimate the parameters of the Heston model (by minimizing the squared errors of

model moments and M2 ∼ M4). In the Heston model, the variance follows a square-root, mean-

reverting process which has three main parameters reversion speed κ, reversion level θ, and

volatility γ. E
[
∫Tt V (u)du

]
has a closed-form solution under the Heston model, presented in

equation (11). Lastly is the RND-implied term structure. We take the average of each time

series (for each maturity) in Figure 2. Given 8 RNDs from different maturities, we have volatility

term structure of 8 observation points.

[Figure 7 Here]

We present the results in Figure 7. There are three sets of bars in Figure 7: Black-Scholes

(tallest, blue-shaded), Heston (shortest, red-shaded), and RND (red-solid). Each bar is a ratio

of the total variance under a chosen maturity over that under the 1-week maturity. Hence the

heights of the first bars are identically 1. In the case of the Black-Scholes model, the heights of

the second through the eighth bars are proportional to time to maturity, i.e. 2, 4, 8, 12, 26, 39,

and 52 for 2W, 1M, 2M, 3M , 6M, and 1Y respectively. However, in the Heston case, the ratios

are 1.05 to 1.61 from 2W to 1Y, and the ratios are between 1.45 to 9.31 in the RND case. In

other words, the Black-Scholes over-estimates the term structure of variances while the Heston

model under-estimates it. In reality, the term structure of variances is somewhere in between.

We note that the Heston model is fitted very poorly by the data. Hence it is not surprising

that it also generates very poor result in terms of total variance. It is interesting to see that

RND generates very different result than the Gaussian model. This result is robust in the flat

and linear cases.

3.4.2 Estimating Variance Elasticity

Britten-Jones and Neuberger (2000) argue that option-implied RNDs embed a rich class of

stochastic processes for the volatility. In their work, however, they only explore a simple regime-

switching model for the volatility. More accepted by the industry is the Heston model where
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the variance follows a mean-reverting square-root process. In this section, we estimate a CEV

(constant elasticity of variance) model of which the Heston model is a special case.

The empirical work on testing a parametric volatility model with option data is voluminous

and not the main focus of our study. Interested readers can see Bates (2003) for an excellent

review. In this paper, we are only interested in the CEV parameters, and in particular the

mean-reversion parameter implied by the RND.

In the CEV model, when the elasticity parameter β equals 1, it should degenerate to the

Heston model. The null hypothesis in our test is hence β = 1 and the alternative hypothesis is

β 6= 1.

As mentioned, we assume a CEV-volatility model (which is the most flexible diffusion model)

as follows:

dS = rSdt+
√
V SdWS

dV = κ(θ − V )dt+ γV
1/2βdWV

(11)

where dWSdWV = ρdt. The density function for the variance is:37

f(V (s)|V (t)) = yk
1

2−β
( x

z2β−1

) 1
2(2−β)

e−x−zId[2
√
xz] (12)

where

k =
−2κ

γ2(2− β)
(
e(2−β)r(s−t) − 1

)
x = kV (t)2−βe−(2−β)κ(s−t)

y = sgn[2− β](2− β)

z = kV (s)2−β

d = 2κθ/γ2 − 1/y

By making the change of variable w = 2kV (s)2−β, we obtain a non-central chi-square variable

with v = 2d+ 2 degrees of freedom:

37See Cox (1975).
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v = 2 +
4κθ

γ2
− 2

2− β
(13)

and Λ = x degrees of non-centrality:

x = V (t)2−βe−(2−β)κ(s−t)
−2κ

γ2(2− β)
(
e−(2−β)κ(s−t) − 1

) (14)

Hence, the mean and variance (which are v + Λ and 2(v + 2Λ) respectively) are:

Et[w(s)] = v + Λ

= 2 +
4κθ

γ2
− 2

2− β
+ V (t)2−βe−(2−β)κ(s−t)

−2κ

γ2(2− β)
(
e−(2−β)κ(s−t) − 1

) (15)

Hence,

Et[V (s)2−β] =
1

2k
Et[w(s)]

=
1

2k

{
2 +

4κθ

γ2
− 2

2− β
+ V (t)2−βe−(2−β)κ(s−t)

−2κ

γ2(2− β)
(
e−(2−β)κ(s−t) − 1

)}
(16)

The second moment of the volatility can be identified similarly. Under the non-central chi-

square distribution, the variance is equal to:

Vt[w(s)] = 2(v + 2Λ)

= 4 +
8κθ

γ2
− 4

2− β
+ V (t)2−βe−(2−β)κ(s−t)

−8κ

γ2(2− β)
(
e−(2−β)κ(s−t) − 1

)
= 4k2Vt[V (s)2−β]

(17)

Consequently,
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Vt[V (s)2−β] =
1

k2

{
1 +

2κθ

γ2
− 1

2− β
+ V (t)2−βe−(2−β)κ(s−t)

−2κ

γ2(2− β)
(
e−(2−β)κ(s−t) − 1

)}
(18)

Equations (16) and (18) are used in the empirical work for estimating parameters. By setting

β = 1, from (16), we arrive at the mean of the volatility as follows:

Et[V (s)] =
γ2
(
e−κ(s−t) − 1

)
−2κ

{
4κθ

γ2
+ V (t)e−κ(s−t)

−2κ

γ2
(
e−κ(s−t) − 1

)}
= θ

(
1− e−κ(s−t)

)
+ V (t)e−κ(s−t)

(19)

The estimates under Heston are reported in Table 11. In general, short maturities present

stronger speed of reversion κ than longer maturities. This is consistent with the findings in the

interest rate literature where short term interest rates present strong mean reversion but not

long term interest rates. This could be a result of higher fluctuations in short term variables.

Reversion levels θ are similar to the observation in ξ (expected total variance) as expected, as

they are mechanically connected in the estimation process. Finally the results of the volatility

of variance γ are also expected. Since this parameter is not observable, it is hard to gauge the

reasonableness of the magnitudes. Comparing the mean levels of X with the standard deviations

of ξ, it would suggest that γ should not be small. In this regard, the estimates seem reasonable.

[Table 11 Here]

From Figure 5, it is suggested that both the Heston model and the Black-Scholes model are

likely to be rejected. Similarly, Table 11 also implies that the Heston model cannot explain

options cross maturities (i.e. parameters of different maturities are different). As a result, in

this section, we make an attempt to estimate the full CEV model.

There exists no easy econometric methodology to estimate the CEV model. As a result, we

estimate the parameters by calibrating the total expected variance: ξ = Et
[
∫Tt V (u)du

]
. which

is computed via Monte Carlo simulations, given that there exists no closed-form solution under

the CEV model. There are 8 daily values for ξ (8 maturities) and we simulate corresponding

8 Monte Carlo values. The parameters are solved by minimizing the sum of squared errors.
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The number of Monte Carlo paths is 1000. The simulations are based upon the Euler equation:

Vt − Vt−1 = κ(θ − Vt−1)∆t + γV
β/2
t−1
√

∆tεt where εt ∼ N(0, 1) and ∆t is set as 1/252 (daily).

For the 1W maturity, there are 5 time steps. For the 2W maturity, there are 10 time steps with

the same first five random numbers as used in 1W. The same procedure applies for 1M (21 time

steps), 2M (42 time steps), 3M (63 time steps), 6M (126 time steps), 9M (189 time steps), and

1Y (252 time steps). Throughout the entire sample (1847 days), the same seed is used in the

simulations.

[Table 12 Here]

The results are reported in Table 12. The β parameter is estimated to be 1.88 which is the

average of all daily estimates (with the median to be 1.99). The standard error is 0.38 and hence

the average is highly significant. We also obtain results of κ, θ, and γ, which are 1.00, 0.20, and

0.26 respectively with corresponding standard errors of 0.35, 0.13, and 0.14 respectively. With

such large standard errors, none of these parameters are significant. The κ estimate is found

to be substantially smaller than the Heston result but the γ estimate is larger. As these two

parameters balance each other out in explaining the volatility, the results in Table 8 could be

unreliable.

4 Conclusion

In this paper, we study the information contents of the risk-neutral density (RND) of EUR/USD

foreign exchange (FX) options for the period from January 2, 2008 till March 18, 2015. In

particular, we study the four uncentralized moments (M1 ∼ M4) of the RND. In conclusion, we

discover that higher moments (M3 and M4) have much more explanatory powers over M2 and

Black-Scholes implied volatility (or implied variance).

Our empirical findings are in four categories. First, we discover that RND has superior

prediction powers of future levels of the underlying asset (which is the EUR/USD exchange

rates in our study), confirming the literature on equities. Moreover, the prediction powers of

M3 and M4 are higher than Black-Scholes implied volatility.

Second, we discover that RND moments can also predict macro economic variables such

as the EPU (economic policy uncertainty) index by Baker, Bloom, and Davisc (2016) and the
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spillover (influence) index by Alter and Beyer (2014). Interestingly, on the contrary, Black-

Scholes implied volatility lags the two indexes.

Third, we discover that RND moments have high explanatory powers of swap spreads which

represent risk premiums in the marketplace. We also identify a “clientile effect” in the moments.

We discover that M4 has a significantly negative impact on short term spreads but significantly

positive impact on long term spreads; whereas M2 and M3 remain the same signs (negative) but

the significance deteriorates as tenor lengthens.

Last, in our sample period, we experience three major market events: Lehman crisis in 2008,

flash crash in 2010, and European crisis in 2011. We observe that RNDs (via moments) behave

drastically differently. In many cases, they behave substantially differently than the implied

volatility of the Black-Scholes model. This sheds light on volatility risk and risk premium

embedded in FX options.

In addition to RND moments, we also compare RND implied stochastic volatility and para-

metric stochastic volatility model such as the CEV (constant elasticity of variance) model and

the Heston model. We find that the Heston model is rejected. The term structure of variances

under the Heston model is too flat compared to the result from the RND. We estimate the

elasticity parameter (β) of the CEV model to be quite high (1.88).
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5 Appendix

5.1 Piece-wise Linear RND

The function is demonstrated in Panel (a) of Figure 8. We write the density function for any

strike k = 0, · · · , n as follows:

gk(S) =
ak − ak−1
Kk+1 −Kk

(S −Kk) + ak−1 (20)

where a−1 = 0, K0 = 0, and Kn+1 = x for. The density function needs to integrate to 1:

1 =

∫ K1

0

a0
K1

SdS +

∫ K2

K1

{
a1 − a0
K2 −K1

S +
a0K2 − a1K1

K2 −K1

}
dS+

· · ·+
∫ Kn

Kn−1

{
an−1 − an−2
Kn −Kn−1

S +
an−2Kn − anKn

Kn −Kn−1

}
dS

=
∑n

k=0

1

2
(Kk+1 −Kk)(ak + ak−1)

where j > k for the option to have a positive payoff. This equation is used to solve for x = Kn+1

as follows:

x =
2

an + an−1

(
1−

∑n

k=1

1

2
(Kk+1 −Kk)(ak + ak−1)

)
+Kn (21)

The pricing equation of a call option can be derived easily as follows:

Ck =
∑n

j=k
vk(j) (22)

where
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vk(j) =

∫ Kj+1

Kj

(S −Kk)gk(S)dS

=

∫ Kj+1

Kj

(S −Kk)

[
ak − ak−1
Kk+1 −Kk

S +
ak−1Kk+1 − akKk

Kk+1 −Kk

]
dS

=

∫ Kj+1

Kj

(
αkS

2 + βkS + γk
)
dS

=

{
αk
3
S3 +

βk
2
S2 + γkS

}∣∣∣∣Kj+1

Kj

(23)

and

αk =
ak − ak−1
Kk+1 −Kk

βk = −Kk
ak − ak−1
Kk+1 −Kk

+
ak−1Kk+1 − akKk

Kk+1 −Kk

γk = −Kk
ak−1Kk+1 − akKk

Kk+1 −Kk

and hence vk(j) can be easily computed.

The moments of the RND of the underlying asset are shown as follows:

E[Sm] =
∑n

k=0

∫ Kk+1

Kk

Smgk(S)dS

=
∑n

k=0

∫ Kk+1

Kk

Sm
[
ak − ak−1
Kk+1 −Kk

S +
ak−1Kk+1 − akKk

Kk+1 −Kk

]
dS

=
∑n

k=0

∫ Kk+1

Kk

(
αkS

m+1 + ckS
m
)
dS

=
∑n

k=0

{
αk

m+ 2
Sm+2 +

ck
m+ 1

Sm+1

}∣∣∣∣Kk+1

Kk

(24)

where a−1 = 0 and

αk =
ak − ak−1
Kk+1 −Kk

ck =
ak−1Kk+1 − akKk

Kk+1 −Kk
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When m = 0 it is the integration of the p.d.f. which is 1. When m > 0, it is an uncentralized

moment.

5.2 Cubic-spline RND

The function is presented graphically in Panel (b) of Figure 8. The equation for the function is:

gk(S) =

{
akS

3 + bkS
2 + ckS + dk k = 2, · · · , 7

ckS + dk k = 1, 8
(25)

where the following constants are satisfied (for k = 2, · · · , 7):

gk−1(Kk) = gk(Kk)

g′k−1(Kk) = g′k(Kk)

g′′k−1(Kk) = g′′k(Kk)

to guarantee smoothness (twice differentiable). There are a total of six strikes: 3 calls and 3

puts (ATM, 25-delta, and 10-delta – ATM call and and ATM put do not have the same strike).

These are k = 2, · · · , 7. K1 and K8 are two hypothetical strike values whose corresponding

option prices are computed using the same volatility quotes of K2 and K7. The upper (U) and

lower (L) limits of the RND are obtained to guarantee the probability to be 1.

5.3 Piece-wise Log Linear RND

We rewrite (20) as:

gk(lnS) =
bk − bk−1

lnKk+1 − lnKk
(x− lnKk) + bk−1

and (21) as:
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x =
2

bn + bn−1

(
1−

∑n

k=1

1

2
(lnKk+1 − lnKk)(bk + bk−1)

)
+ lnKn (26)

The pricing equation for the call option remains as (22) with the following replacement for

(23):

vk(j) =

∫ lnKj+1

lnKj

(ex − elnKk)gk(x)dx

≈
∫ lnKj+1

lnKj

(x− lnKk)gk(x)dx

(27)

In short, it is the same solution except that S is replaced by lnS and K is replaced by lnK.
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Table 6: FX Prediction

delta 1W Spot (#1838) Coef t-stat Coef t-stat delta 2W Spot (#1833) Coef t-stat Coef t-stat

Const 0.00 -0.88 0.00 -1.01 Const 0.00 -0.63 0.00 -0.77
d 1W M2 -156.32 -6.38 d 2W M2 -12.03 -0.56
d 1W M3 -371.08 -6.82 d 2W M3 -426.76 -11.69
d 1W M4 -187.58 -6.86 d 2W M4 -376.07 -11.55
d 1W IV 237.23 6.13 21.17 2.57 d 2W IV 40.66 1.40 20.27 3.37
Lag1 delta 1W spot 0.89 29.94 0.88 29.20 Lag1 delta 2W spot 0.94 37.75 0.97 33.30
Lag2 delta 1W spot 0.02 0.44 -0.01 -0.13 Lag2 delta 2W spot 0.05 1.54 -0.03 -0.65
Lag3 delta 1W spot -0.04 -0.96 -0.03 -0.74 Lag3 delta 2W spot -0.03 -1.04 -0.06 -1.48
Lag4 delta 1W spot -0.05 -2.01 -0.09 -2.95 Lag4 delta 2W spot 0.01 0.42 0.01 0.23
adj R2 69.85% 66.64% adj R2 87.40% 82.35%

delta 1M Spot (#1822) Coef t-stat Coef t-stat delta 2M Spot (#1802) Coef t-stat Coef t-stat

Const 0.00 -0.69 0.00 -0.71 Const 0.00 -0.86 0.00 -0.80
d 1M M2 12.84 3.15 d 2M M2 2.20 0.71
d 1M M3 -208.01 -9.66 d 2M M3 -90.89 -9.93
d 1M M4 -197.00 -11.05 d 2M M4 -83.30 -9.05
d 1M IV 9.71 2.00 15.47 3.66 d 2M IV 20.00 4.78 10.19 3.82
Lag1 delta 1M spot 0.95 37.38 1.01 33.69 Lag1 delta 2M spot 0.93 39.28 1.00 32.84
Lag2 delta 1M spot 0.02 0.64 -0.03 -0.63 Lag2 delta 2M spot 0.08 2.19 0.02 0.47
Lag3 delta 1M spot 0.03 0.74 -0.02 -0.66 Lag3 delta 2M spot -0.04 -1.16 -0.07 -1.71
Lag4 delta 1M spot -0.02 -0.71 0.00 -0.08 Lag4 delta 2M spot 0.02 0.69 0.03 0.90
adj R2 93.67% 91.89% adj R2 96.78% 95.97%

delta 3M Spot (#1781) Coef t-stat Coef t-stat delta 6M Spot (#1718) Coef t-stat Coef t-stat

Const 0.00 -1.06 0.00 -1.01 Const 0.00 -1.01 0.00 -1.02
d 3M M2 -9.69 -2.56 d 6M M2 -21.22 -11.81
d 3M M3 -39.27 -3.07 d 6M M3 -12.38 -4.85
d 3M M4 -28.19 -2.24 d 6M M4 7.49 2.68
d 3M IV 31.59 6.65 8.33 4.65 d 6M IV 37.66 12.46 5.31 3.25
Lag1 delta 3M spot 0.95 40.38 0.98 37.21 Lag1 delta 6M spot 0.95 41.55 1.00 36.92
Lag2 delta 3M spot 0.04 1.20 0.02 0.52 Lag2 delta 6M spot 0.04 1.30 0.00 -0.07
Lag3 delta 3M spot -0.03 -0.81 -0.05 -1.24 Lag3 delta 6M spot -0.04 -1.09 -0.04 -0.98
Lag4 delta 3M spot 0.03 1.29 0.04 1.31 Lag4 delta 6M spot 0.04 1.70 0.04 1.50
adj R2 97.77% 97.35% adj R2 99.04% 98.69%

delta 9M Spot (#1655) Coef t-stat Coef t-stat delta 1Y Spot (#1593) Coef t-stat Coef t-stat

Const 0.00 -0.82 0.00 -0.73 Const 0.00 -0.95 0.00 -0.75
d 9M M2 -16.15 -15.02 d 1Y M2 -13.00 -16.61
d 9M M3 -8.73 -5.11 d 1Y M3 -5.75 -7.46
d 9M M4 5.60 3.09 d 1Y M4 5.50 5.46
d 9M IV 29.70 17.45 5.08 4.79 d 1Y IV 23.39 20.35 4.13 4.68
Lag1 delta 9M spot 0.96 46.15 1.00 39.74 Lag1 delta 1Y spot 0.95 46.23 0.99 33.68
Lag2 delta 9M spot 0.05 1.53 -0.01 -0.18 Lag2 delta 1Y spot 0.07 2.28 0.03 0.84
Lag3 delta 9M spot -0.01 -0.50 0.00 -0.06 Lag3 delta 1Y spot -0.03 -1.02 -0.03 -0.70
Lag4 delta 9M spot 0.01 0.21 0.01 0.23 Lag4 delta 1Y spot 0.01 0.44 0.01 0.24
adj R2 99.31% 98.99% adj R2 99.36% 98.98%

46



Table 7: Granger-Causality Wald Test for EPU and RND (Lag=6)

(a) Term Structure of Moments v.s. EPU

Test Chi-Square Pr >ChiSq ReMark

Term Struc. IV doesn’t predict EPU 135.59 <0.0001 Reject
EPU doesn’t predict Term Struc. IV 103.49 <0.0001 Reject

Term Struc. M2 doesn’t predict EPU 113.15 <0.0001 Reject
EPU doesn’t predict Term Struc. M2 82.73 0.0014 Doesn’t Reject

Term Struc. M3 doesn’t predict EPU 102.07 <0.0001 Reject
EPU doesn’t predict Term Struc. M3 64.11 0.0598 Doesn’t Reject

Term Struc. M4 doesn’t predict EPU 92.24 <0.0001 Reject
EPU doesn’t predict Term Struc. M4 66.49 0.0397 Doesn’t Reject

(b) Moments v.s. EPU

Test Chi-Square Pr>ChiSq ReMark

1-Week Moments doesn’t predict EPU 57.98 <0.0001 Reject
EPU doesn’t predict 1-Week Moments 28.88 0.0498 Doesn’t Reject

2-Week Moments doesn’t predict EPU 58.31 <0.0001 Reject
EPU doesn’t predict Term Struc. 2-Week 34.2 0.0119 Doesn’t Reject

1-Month Moments doesn’t predict EPU 53.78 <0.0001 Reject
EPU doesn’t predict 1-Month Moments 38.71 0.0031 Doesn’t Reject

2-Month Moments doesn’t predict EPU 49.17 <0.0001 Reject
EPU doesn’t predict 2-Month Moments 34.39 0.0113 Doesn’t Reject

3-Month Moments doesn’t predict EPU 43.91 0.0006 Doesn’t Reject
EPU doesn’t predict 3-Month Moments 26.79 0.083 Doesn’t Reject

6-Month Moments doesn’t predict EPU 38.92 0.0029 Doesn’t Reject
EPU doesn’t predict 6-Month Moments 26.55 0.0879 Doesn’t Reject

9-Month Moments doesn’t predict EPU 37.94 0.0039 Doesn’t Reject
EPU doesn’t predict 9-Month Moments 33.18 0.0159 Doesn’t Reject

1-Year Moments doesn’t predict EPU 40.82 0.0016 Doesn’t Reject
EPU doesn’t predict 1-Year Moments 28.75 0.0515 Doesn’t Reject
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Table 8: Granger-Causality Wald Test for USD Influence Index and RND (Lag=1)

(a) Term Structure v.s. USD Influence Index

Test Chi-Square Pr >ChiSq ReMark

Term Struc. IV doesn’t predict Influence Index 108.79 <0.0001 Reject
Influence Index doesn’t predict Term Struc. IV 73.59 <0.0001 Reject

Term Struc. M2 doesn’t predict Influence Index 95.96 <0.0001 Reject
Influence Index doesn’t predict Term Struc. M2 7.92 0.4416 Doesn’t Reject

Term Struc. M3 doesn’t predict Influence Index 68.11 <0.0001 Reject
Influence Index doesn’t predict Term Struc. M3 15.77 0.04586 Doesn’t Reject

Term Struc. M4 doesn’t predict Influence Index 72.86 <0.0001 Reject
Influence Index doesn’t predict Term Struc. M4 16.11 0.0409 Doesn’t Reject

(b) Moments v.s. USD Influence Index

Test Chi-Square Pr>ChiSq ReMark

1-Week Moments doesn’t predict Influence Index 89.75 <0.0001 Reject
Influence Index doesn’t predict 1-Week Moments 5.37 0.1469 Doesn’t Reject

2-Week Moments doesn’t predict Influence Index 77.4 <0.0001 Reject
Influence Index doesn’t predict 2-Week Moments 8.69 0.0337 Doesn’t Reject

1-Month Moments doesn’t predict Influence Index 75.49 <0.0001 Reject
Influence Index doesn’t predict 1-Month Moments 5.92 0.1153 Doesn’t Reject

2-Month Moments doesn’t predict Influence Index 76.87 <0.0001 Reject
Influence Index doesn’t predict 2-Month Moments 10.48 0.0149 Doesn’t Reject

3-Month Moments doesn’t predict Influence Index 71.9 <0.0001 Reject
Influence Index doesn’t predict 3-Month Moments 13.48 0.0037 Doesn’t Reject

6-Month Moments doesn’t predict Influence Index 68.43 <0.0001 Reject
Influence Index doesn’t predict 6-Month Moments 18.51 0.0003 Doesn’t Reject

9-Month Moments doesn’t predict Influence Index 66.13 <0.0001 Reject
Influence Index doesn’t predict 9-Month Moments 18.32 0.0004 Doesn’t Reject

1-Year Moments doesn’t predict Influence Index 129.21 <0.0001 Reject
Influence Index doesn’t predict 1-Year Moments 31.3 0.0018 Doesn’t Reject
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Table 9: Future Realized Volatility Explanation Ability

RZ VAR 1W RZ VAR 2W RZ VAR 1M

Coef t stat Coef t stat Coef t stat
Cnst 0 2.85 Cnst 0 5.09 Cnst 0 8.94
M2 0.53 2.1 M2 0.05 0.22 M2 -0.02 -0.16
M3 1.32 2.72 M3 0.67 1.57 M3 0.3 1.38
M4 0.72 3.12 M4 0.51 2.37 M4 0.11 0.75
IV -0.22 -0.94 IV 0.21 0.98 IV 0.35 3.28
# 1843 # 1838 # 1822
adj. R2 17.56% adj. R2 15.79% adj. R2 20.70%

RZ VAR 2M RZ VAR 3M RZ VAR 6M

Coef t stat Coef t stat Coef t stat
Cnst 0 12.89 Cnst 0 13.78 Cnst 0 7.1
M2 -0.18 -1.73 M2 -0.12 -1.22 M2 0.68 8.02
M3 -0.43 -2.82 M3 -0.5 -4.43 M3 -0.36 -5.32
M4 -0.58 -4.82 M4 -0.71 -7.03 M4 -1.22 -15.46
IV 0.5 5.33 IV 0.4 4.44 IV -0.29 -3.81
# 1801 # 1781 # 1718
adj. R2 29.86% adj. R2 34.14% adj. R2 54.48%

RZ VAR 9M RZ VAR 1Y

Coef t stat Coef t stat
Cnst 0 10.02 Cnst 0.01 13.87
M2 0.79 10.8 M2 0.47 7.17
M3 0.19 4.24 M3 0.43 13.24
M4 -0.79 -12.64 M4 -0.25 -4.71
IV -0.51 -8.18 IV -0.39 -7.28
# 1655 # 1592
adj. R2 61.96% adj. R2 54.93%
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Table 10: Regression: (a) VIX on Concurrent Moments

1W 2W 1M

Coef t stat Coef t stat Coef t stat
Cnst 11.01 23.71 Cnst 10.80 27.39 Cnst 10.63 32.25
M2 8964.07 3.66 M2 -2553.36 -1.19 M2 122.44 0.18
M3 16508.02 3.83 M3 7085.26 3.63 M3 1831.58 2.10
M4 8746.57 4.07 M4 9413.07 6.12 M4 1529.04 1.50
IV 22523.54 5.70 IV 24459.10 7.23 IV 10410.12 9.63
# 1799 # 1799 # 1799
adj. R2 73.20% adj. R2 77.30% adj. R2 77.60%

2M 3M 6M

Coef t stat Coef t stat Coef t stat
Cnst 9.56 24.76 Cnst 9.01 21.68 Cnst 10.50 23.65
M2 513.60 1.25 M2 93.55 0.33 M2 -1058.48 -7.51
M3 -880.43 -1.86 M3 -400.78 -1.39 M3 723.56 6.31
M4 -1568.25 -2.66 M4 -778.60 -2.15 M4 1091.14 7.30
IV 5360.69 8.47 IV 4185.75 9.50 IV 3697.50 17.24
# 1799 # 1799 # 1799
adj. R2 76.85% adj. R2 75.20% adj. R2 71.88%

9M 1Y

Coef t stat Coef t stat
Cnst 11.14 23.41 Cnst 11.64 22.77
M2 -913.49 -9.45 M2 -716.02 -9.64
M3 673.00 10.85 M3 535.22 13.59
M4 1002.31 11.30 M4 788.01 12.86
IV 2627.02 18.24 IV 1901.57 17.59
# 1799 # 1799
adj. R2 69.69% adj. R2 67.50%

Note: The regression is VIX(t) on Moments(t-22).
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Regression: (b) VIX on Lagged Moments

1W 2W 1M

Coef t stat Coef t stat Coef t stat
Cnst 10.64 19.43 Cnst 11.72 23.27 Cnst 13.78 31.02
M2 27696.20 9.45 M2 5932.24 2.15 M2 -594.88 -0.65
M3 51089.20 9.92 M3 26946.55 10.67 M3 11565.47 9.65
M4 25049.13 9.81 M4 20156.26 10.18 M4 10437.76 7.50
IV -11473.93 -2.42 IV 8641.78 1.99 IV 9744.04 6.68
# 1777 # 1777 # 1777
adj. R2 63.58% adj. R2 63.77% adj. R2 59.84%

2M 3M 6M

Coef t stat Coef t stat Coef t stat
Cnst 14.34 27.32 Cnst 14.16 25.50 Cnst 15.86 28.70
M2 -817.81 -1.46 M2 -996.85 -2.59 M2 -1850.94 -10.51
M3 3859.47 5.93 M3 2093.23 5.42 M3 1416.19 9.91
M4 3197.28 3.97 M4 1880.91 3.89 M4 2059.17 11.10
IV 6175.66 7.14 IV 4907.07 8.27 IV 4368.07 16.29
# 1777 # 1777 # 1777
adj. R2 57.74% adj. R2 56.33% adj. R2 57.09%

9M 1Y

Coef t stat Coef t stat
Cnst 16.40 28.81 Cnst 16.72 27.93
M2 -1513.21 -13.06 M2 -1155.86 -13.28
M3 945.54 12.73 M3 659.67 14.27
M4 1518.98 14.34 M4 1095.51 15.28
IV 3170.67 18.37 IV 2288.71 18.05
# 1777 # 1777
adj. R2 57.26% adj. R2 55.97%

Note: The regression is VIX(t) on Moments(t-22).
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Table 11: Estimated Heston Parameters

kappa theta gamma

coef. std.err. coef. std.err. coef. std.err.

1W 22.9153 0.0117 0.0076 0.0007 0.0186 0
2W 7.3978 0.0067 0.0110 0.0003 0.0151 0
1M 5.2884 0.0057 0.0174 0.0004 0.0226 0
2M 3.9531 0.0049 0.0267 0.0004 0.0334 0
3M 3.2716 0.0045 0.035 0.0005 0.0434 0
6M 2.6491 0.0041 0.0548 0.0006 0.0757 0
9M 2.2670 0.0038 0.0701 0.0006 0.1077 0
1Y 2.0049 0.0036 0.0831 0.0007 0.1413 0.0001

Table 12: Estimated CEV Parameters

beta kappa theta gamma

mean 1.8816 1.0071 0.1979 0.2574

median 1.9897 0.9691 0.1917 0.2655

std.dev. 0.3849 0.3483 0.131 0.1421
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Figure 1: Piece-wise Flat RND
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Figure 2: Moments of RND
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Figure 3: Net Import to US From EU
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Figure 4: Higher Moments of RND and PEU index
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(a) M4 v.s. USD Influence Index

(b) M4 v.s. Change of USD Influence Index

Figure 5: US Dollar Influence Index and M4
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(a) Black-Scholes IV

(b) VIX

Figure 6: BS IV v.s. VIX
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Figure 7: Variance Proportionality
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(a) Piece-wise Linear Function

(b) Cubic Spine Function

Figure 8: Piece-wise Linear and Cubic Spline RNDs
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